Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782468

RESUMEN

The structure has been determined by electron cryomicroscopy of the adenosine triphosphate (ATP) synthase from Mycobacterium smegmatis This analysis confirms features in a prior description of the structure of the enzyme, but it also describes other highly significant attributes not recognized before that are crucial for understanding the mechanism and regulation of the mycobacterial enzyme. First, we resolved not only the three main states in the catalytic cycle described before but also eight substates that portray structural and mechanistic changes occurring during a 360° catalytic cycle. Second, a mechanism of auto-inhibition of ATP hydrolysis involves not only the engagement of the C-terminal region of an α-subunit in a loop in the γ-subunit, as proposed before, but also a "fail-safe" mechanism involving the b'-subunit in the peripheral stalk that enhances engagement. A third unreported characteristic is that the fused bδ-subunit contains a duplicated domain in its N-terminal region where the two copies of the domain participate in similar modes of attachment of the two of three N-terminal regions of the α-subunits. The auto-inhibitory plus the associated "fail-safe" mechanisms and the modes of attachment of the α-subunits provide targets for development of innovative antitubercular drugs. The structure also provides support for an observation made in the bovine ATP synthase that the transmembrane proton-motive force that provides the energy to drive the rotary mechanism is delivered directly and tangentially to the rotor via a Grotthuss water chain in a polar L-shaped tunnel.


Asunto(s)
Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas , Bovinos , Microscopía por Crioelectrón , Hidrólisis , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Proteínas/química , Fuerza Protón-Motriz , Tuberculosis/microbiología , Proteína Inhibidora ATPasa
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33542155

RESUMEN

The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle, and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other. Disruption of the interface between dimers by mutation affects the morphology of the cristae severely. By analysis of particles of purified dimeric bovine ATP synthase by cryo-electron microscopy, we have shown that the angle between the central rotatory axes of the monomeric complexes varies between ca. 76 and 95°. These particles represent active dimeric ATP synthase. Some angular variations arise directly from the catalytic mechanism of the enzyme, and others are independent of catalysis. The monomer-monomer interaction is mediated mainly by j subunits attached to the surface of wedge-shaped protein-lipid structures in the membrane domain of the complex, and the angular variation arises from rotational and translational changes in this interaction, and combinations of both. The structures also suggest how the dimeric ATP synthases might be interacting with each other to form the characteristic rows along the tips of the cristae via other interwedge contacts, molding themselves to the range of oligomeric arrangements observed by tomography of mitochondrial membranes, and at the same time allowing the ATP synthase to operate under the range of physiological conditions that influence the structure of the cristae.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Multimerización de Proteína , Animales , Catálisis , Bovinos , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Modelos Moleculares , Conformación Proteica
3.
Proc Natl Acad Sci U S A ; 117(47): 29602-29608, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168734

RESUMEN

The adenosine triphosphate (ATP) synthase in human mitochondria is a membrane bound assembly of 29 proteins of 18 kinds organized into F1-catalytic, peripheral stalk (PS), and c8-rotor ring modules. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, imported into the mitochondrial matrix, and assembled into the complex with the mitochondrial gene products ATP6 and ATP8. Intermediate vestigial ATPase complexes formed by disruption of nuclear genes for individual subunits provide a description of how the various domains are introduced into the enzyme. From this approach, it is evident that three alternative pathways operate to introduce the PS module (including associated membrane subunits e, f, and g). In one pathway, the PS is built up by addition to the core subunit b of membrane subunits e and g together, followed by membrane subunit f. Then this b-e-g-f complex is bound to the preformed F1-c8 module by subunits OSCP and F6 The final component of the PS, subunit d, is added subsequently to form a key intermediate that accepts the two mitochondrially encoded subunits. In another route to this key intermediate, first e and g together and then f are added to a preformed F1-c8-OSCP-F6-b-d complex. A third route involves the addition of the c8-ring module to the complete F1-PS complex. The key intermediate then accepts the two mitochondrially encoded subunits, stabilized by the addition of subunit j, leading to an ATP synthase complex that is coupled to the proton motive force and capable of making ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Línea Celular , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(38): 23519-23526, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900941

RESUMEN

The structure of the dimeric ATP synthase from bovine mitochondria determined in three rotational states by electron cryo-microscopy provides evidence that the proton uptake from the mitochondrial matrix via the proton inlet half channel proceeds via a Grotthus mechanism, and a similar mechanism may operate in the exit half channel. The structure has given information about the architecture and mechanical constitution and properties of the peripheral stalk, part of the membrane extrinsic region of the stator, and how the action of the peripheral stalk damps the side-to-side rocking motions that occur in the enzyme complex during the catalytic cycle. It also describes wedge structures in the membrane domains of each monomer, where the skeleton of each wedge is provided by three α-helices in the membrane domains of the b-subunit to which the supernumerary subunits e, f, and g and the membrane domain of subunit A6L are bound. Protein voids in the wedge are filled by three specifically bound cardiolipin molecules and two other phospholipids. The external surfaces of the wedges link the monomeric complexes together into the dimeric structures and provide a pivot to allow the monomer-monomer interfaces to change during catalysis and to accommodate other changes not related directly to catalysis in the monomer-monomer interface that occur in mitochondrial cristae. The structure of the bovine dimer also demonstrates that the structures of dimeric ATP synthases in a tetrameric porcine enzyme have been seriously misinterpreted in the membrane domains.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales , Animales , Bovinos , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/ultraestructura , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protones , Torque
5.
Open Biol ; 9(6): 190066, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31238823

RESUMEN

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F1-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity. The ßE-subunits in all three enzymes are in the conventional 'open' state, and in the case of C. thermarum and M. smegmatis, they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum, the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.


Asunto(s)
Adenosina Difosfato/metabolismo , Fusobacterium nucleatum/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Fusobacterium nucleatum/química , Hidrólisis , Modelos Moleculares , Conformación Molecular , Dominios Proteicos
6.
Proc Natl Acad Sci U S A ; 116(10): 4206-4211, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30683723

RESUMEN

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from Mycobacterium smegmatis which hydrolyzes ATP very poorly. The structure of the α3ß3-component of the catalytic domain is similar to those in active F1-ATPases in Escherichia coli and Geobacillus stearothermophilus However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. In E. coli and G. stearothermophilus, the α-helices adopt an "up" state where the α-helices enter the α3ß3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase from Caldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The ßE-subunits in both enzymes are in the usual "open" conformation but appear to be occupied uniquely by the combination of an adenosine 5'-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1 domain in Mycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antituberculosos , Proteínas Bacterianas/antagonistas & inhibidores , Diarilquinolinas/química , Farmacorresistencia Bacteriana Múltiple , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Complejos de ATP Sintetasa/química , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/química , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
7.
Proc Natl Acad Sci U S A ; 115(9): 2102-2107, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440423

RESUMEN

The structures and functions of the components of ATP synthases, especially those subunits involved directly in the catalytic formation of ATP, are widely conserved in metazoans, fungi, eubacteria, and plant chloroplasts. On the basis of a map at 32.5-Å resolution determined in situ in the mitochondria of Trypanosoma brucei by electron cryotomography, it has been proposed that the ATP synthase in this species has a noncanonical structure and different catalytic sites in which the catalytically essential arginine finger is provided not by the α-subunit adjacent to the catalytic nucleotide-binding site as in all species investigated to date, but rather by a protein, p18, found only in the euglenozoa. A crystal structure at 3.2-Å resolution of the catalytic domain of the same enzyme demonstrates that this proposal is incorrect. In many respects, the structure is similar to the structures of F1-ATPases determined previously. The α3ß3-spherical portion of the catalytic domain in which the three catalytic sites are found, plus the central stalk, are highly conserved, and the arginine finger is provided conventionally by the α-subunits adjacent to each of the three catalytic sites found in the ß-subunits. Thus, the enzyme has a conventional catalytic mechanism. The structure differs from previous described structures by the presence of a p18 subunit, identified only in the euglenozoa, associated with the external surface of each of the three α-subunits, thereby elaborating the F1-domain. Subunit p18 is a pentatricopeptide repeat (PPR) protein with three PPRs and appears to have no function in the catalytic mechanism of the enzyme.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Dominio Catalítico , Regulación Enzimológica de la Expresión Génica , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética
8.
Proc Natl Acad Sci U S A ; 113(45): 12709-12714, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791192

RESUMEN

The structure of the intact monomeric ATP synthase from the fungus, Pichia angusta, has been solved by electron cryo-microscopy. The structure provides insights into the mechanical coupling of the transmembrane proton motive force across mitochondrial membranes in the synthesis of ATP. This mechanism requires a strong and integral stator, consisting of the catalytic α3ß3-domain, peripheral stalk, and, in the membrane domain, subunit a and associated supernumerary subunits, kept in contact with the rotor turning at speeds up to 350 Hz. The stator's integrity is ensured by robust attachment of both the oligomycin sensitivity conferral protein (OSCP) to the catalytic domain and the membrane domain of subunit b to subunit a. The ATP8 subunit provides an additional brace between the peripheral stalk and subunit a. At the junction between the OSCP and the apparently stiff, elongated α-helical b-subunit and associated d- and h-subunits, an elbow or joint allows the stator to bend to accommodate lateral movements during the activity of the catalytic domain. The stator may also apply lateral force to help keep the static a-subunit and rotating c10-ring together. The interface between the c10-ring and the a-subunit contains the transmembrane pathway for protons, and their passage across the membrane generates the turning of the rotor. The pathway has two half-channels containing conserved polar residues provided by a bundle of four α-helices inclined at ∼30° to the plane of the membrane, similar to those described in other species. The structure provides more insights into the workings of this amazing machine.

9.
Proc Natl Acad Sci U S A ; 113(39): 10860-5, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621435

RESUMEN

The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a "down" state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an "up" state, where the α-helices, devoid of ATP, enter the α3ß3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme's hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3ß3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the ßE-catalytic site is in the usual "open" conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis.


Asunto(s)
Álcalis/metabolismo , Bacillus/enzimología , ATPasas de Translocación de Protón/metabolismo , Temperatura , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Bovinos , Cristalografía por Rayos X , Mitocondrias/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/aislamiento & purificación , Alineación de Secuencia , Electricidad Estática , Homología Estructural de Proteína
10.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1309-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457523

RESUMEN

The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F1 domain of the enzyme. This domain is a complex of three α-subunits and three ß-subunits, and one copy of each of the γ-, δ- and ℇ-subunits. Attempts to crystallize the F1-ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and ß-subunits only. Its structure was determined to 2.3 Šresolution and consists of a heterodimer of one α-subunit and one ß-subunit. It has no bound nucleotides, and it corresponds to the `open' or `empty' catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.


Asunto(s)
Biocatálisis , Paracoccus denitrificans/enzimología , Multimerización de Proteína , Subunidades de Proteína/química , ATPasas de Translocación de Protón/química , Proteínas Bacterianas/química , Cristalización , Cristalografía por Rayos X
11.
Proc Natl Acad Sci U S A ; 112(43): 13231-6, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26460036

RESUMEN

The structure of the intact ATP synthase from the α-proteobacterium Paracoccus denitrificans, inhibited by its natural regulatory ζ-protein, has been solved by X-ray crystallography at 4.0 Å resolution. The ζ-protein is bound via its N-terminal α-helix in a catalytic interface in the F1 domain. The bacterial F1 domain is attached to the membrane domain by peripheral and central stalks. The δ-subunit component of the peripheral stalk binds to the N-terminal regions of two α-subunits. The stalk extends via two parallel long α-helices, one in each of the related b and b' subunits, down a noncatalytic interface of the F1 domain and interacts in an unspecified way with the a-subunit in the membrane domain. The a-subunit lies close to a ring of 12 c-subunits attached to the central stalk in the F1 domain, and, together, the central stalk and c-ring form the enzyme's rotor. Rotation is driven by the transmembrane proton-motive force, by a mechanism where protons pass through the interface between the a-subunit and c-ring via two half-channels in the a-subunit. These half-channels are probably located in a bundle of four α-helices in the a-subunit that are tilted at ∼30° to the plane of the membrane. Conserved polar residues in the two α-helices closest to the c-ring probably line the proton inlet path to an essential carboxyl group in the c-subunit in the proton uptake site and a proton exit path from the proton release site. The structure has provided deep insights into the workings of this extraordinary molecular machine.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/química , Paracoccus denitrificans/enzimología , Secuencia de Bases , Catálisis , Cristalografía por Rayos X , ATPasas de Translocación de Protón Mitocondriales/genética , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad de la Especie
12.
Elife ; 4: e10180, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26439008

RESUMEN

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.


Asunto(s)
Microscopía por Crioelectrón , ATPasas de Translocación de Protón Mitocondriales/química , Animales , Bovinos , Biología Computacional , Imagenología Tridimensional , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína
13.
Open Biol ; 5(9): 150119, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26423580

RESUMEN

The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases, which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme can only carry out the synthetic reaction. The mechanism of inhibition of its ATP hydrolytic activity involves a ζ inhibitor protein, which binds to the catalytic F1-domain of the enzyme. The complex that has been crystallized, and the crystals themselves, contain the nine core proteins of the complete F-ATPase complex plus the ζ inhibitor protein. The formation of crystals depends upon the presence of bound bacterial cardiolipin and phospholipid molecules; when they were removed, the complex failed to crystallize. The experiments open the way to an atomic structure of an F-ATPase complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Paracoccus denitrificans/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Cristalización , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Unión Proteica , Subunidades de Proteína/análisis , Subunidades de Proteína/química , ATPasas de Translocación de Protón/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(19): 6009-14, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918412

RESUMEN

The rotation of the central stalk of F1-ATPase is driven by energy derived from the sequential binding of an ATP molecule to its three catalytic sites and the release of the products of hydrolysis. In human F1-ATPase, each 360° rotation consists of three 120° steps composed of substeps of about 65°, 25°, and 30°, with intervening ATP binding, phosphate release, and catalytic dwells, respectively. The F1-ATPase inhibitor protein, IF1, halts the rotary cycle at the catalytic dwell. The human and bovine enzymes are essentially identical, and the structure of bovine F1-ATPase inhibited by IF1 represents the catalytic dwell state. Another structure, described here, of bovine F1-ATPase inhibited by an ATP analog and the phosphate analog, thiophosphate, represents the phosphate binding dwell. Thiophosphate is bound to a site in the α(E)ß(E)-catalytic interface, whereas in F1-ATPase inhibited with IF1, the equivalent site is changed subtly and the enzyme is incapable of binding thiophosphate. These two structures provide a molecular mechanism of how phosphate release generates a rotary substep as follows. In the active enzyme, phosphate release from the ß(E)-subunit is accompanied by a rearrangement of the structure of its binding site that prevents released phosphate from rebinding. The associated extrusion of a loop in the ß(E)-subunit disrupts interactions in the α(E)ß(E-)catalytic interface and opens it to its fullest extent. Other rearrangements disrupt interactions between the γ-subunit and the C-terminal domain of the α(E)-subunit. To restore most of these interactions, and to make compensatory new ones, the γ-subunit rotates through 25°-30°.


Asunto(s)
Fosfatos/química , ATPasas de Translocación de Protón/química , Adenosina Difosfato/química , Animales , Dominio Catalítico , Bovinos , Cristalografía por Rayos X , Humanos , Hidrólisis , Mitocondrias/metabolismo , Modelos Moleculares , Proteínas Motoras Moleculares/química , Unión Proteica , Estructura Secundaria de Proteína , Temperatura
15.
J Biol Chem ; 290(21): 13308-20, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25851905

RESUMEN

The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase.


Asunto(s)
Membrana Celular/metabolismo , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Bovinos , Reactivos de Enlaces Cruzados , ATPasas de Translocación de Protón Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Conformación Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Biochem J ; 468(1): 167-75, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25759169

RESUMEN

The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-ß-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-ß-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Hongos/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Bovinos , Cromatografía de Afinidad , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Hongos/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Datos de Secuencia Molecular , Pichia/enzimología , Pichia/genética , Estructura Terciaria de Proteína , Subunidades de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Yarrowia/enzimología , Yarrowia/genética
17.
Proc Natl Acad Sci U S A ; 111(31): 11305-10, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049402

RESUMEN

The hydrolysis of ATP by the ATP synthase in mitochondria is inhibited by a protein called IF1. Bovine IF1 has 84 amino acids, and its N-terminal inhibitory region is intrinsically disordered. In a known structure of bovine F1-ATPase inhibited with residues 1-60 of IF1, the inhibitory region from residues 1-50 is mainly α-helical and buried deeply at the α(DP)ß(DP)-catalytic interface, where it forms extensive interactions with five of the nine subunits of F1-ATPase but mainly with the ß(DP)-subunit. As described here, on the basis of two structures of inhibited complexes formed in the presence of large molar excesses of residues 1-60 of IF1 and of a version of IF1 with the mutation K39A, it appears that the intrinsically disordered inhibitory region interacts first with the αEßE-catalytic interface, the most open of the three catalytic interfaces, where the available interactions with the enzyme allow it to form an α-helix from residues 31-49. Then, in response to the hydrolysis of an ATP molecule and the associated partial closure of the interface to the αTPßTP state, the extent of the folded α-helical region of IF1 increases to residues 23-50 as more interactions with the enzyme become possible. Finally, in response to the hydrolysis of a second ATP molecule and a concomitant 120° rotation of the γ-subunit, the interface closes further to the α(DP)ß(DP)-state, allowing more interactions to form between the enzyme and IF1. The structure of IF1 now extends to its maximally folded state found in the previously observed inhibited complex.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Animales , Bovinos , Cristalografía por Rayos X , Proteínas Intrínsecamente Desordenadas/antagonistas & inhibidores , Proteínas Intrínsecamente Desordenadas/química , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/química , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Proteínas/química , ATPasas de Translocación de Protón/química , Proteína Inhibidora ATPasa
18.
Open Biol ; 3(2): 120160, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407638

RESUMEN

The mitochondrial F1-ATPase inhibitor protein, IF1, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF1 occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme's rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF1 with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1-60 of bovine IF1 with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme's stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.


Asunto(s)
Complejos de ATP Sintetasa/aislamiento & purificación , Adenosina Trifosfato/química , Mitocondrias/química , Subunidades de Proteína/aislamiento & purificación , ATPasas de Translocación de Protón/aislamiento & purificación , Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Catálisis , Bovinos , Hidrólisis , Mitocondrias/enzimología , Mitocondrias/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Proteínas/química , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/química , Ovinos , Porcinos , Proteína Inhibidora ATPasa
19.
Open Biol ; 3(2): 120164, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407639

RESUMEN

The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF1 has been determined at 2.5 Å resolution. The inhibitory region of IF1 from residues 1 to 36 is entrapped between the C-terminal domains of the α(DP)- and ß(DP)-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F1-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic ß(E)-subunits. The nucleotide binding site in ß(E)-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.


Asunto(s)
Cristalografía por Rayos X , Proteínas/química , ATPasas de Translocación de Protón/química , Saccharomyces cerevisiae/enzimología , Adenosina Difosfato/química , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Bovinos , Hidrólisis , Unión Proteica , Conformación Proteica , Proteínas/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Proteína Inhibidora ATPasa
20.
Proc Natl Acad Sci U S A ; 109(28): 11139-43, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22733764

RESUMEN

The molecular description of the mechanism of F(1)-ATPase is based mainly on high-resolution structures of the enzyme from mitochondria, coupled with direct observations of rotation in bacterial enzymes. During hydrolysis of ATP, the rotor turns counterclockwise (as viewed from the membrane domain of the intact enzyme) in 120° steps. Because the rotor is asymmetric, at any moment the three catalytic sites are at different points in the catalytic cycle. In a "ground-state" structure of the bovine enzyme, one site (ß(E)) is devoid of nucleotide and represents a state that has released the products of ATP hydrolysis. A second site (ß(TP)) has bound the substrate, magnesium. ATP, in a precatalytic state, and in the third site (ß(DP)), the substrate is about to undergo hydrolysis. Three successive 120° turns of the rotor interconvert the sites through these three states, hydrolyzing three ATP molecules, releasing the products and leaving the enzyme with two bound nucleotides. A transition-state analog structure, F(1)-TS, displays intermediate states between those observed in the ground state. For example, in the ß(DP)-site of F(1)-TS, the terminal phosphate of an ATP molecule is undergoing in-line nucleophilic attack by a water molecule. As described here, we have captured another intermediate in the catalytic cycle, which helps to define the order of substrate release. In this structure, the ß(E)-site is occupied by the product ADP, but without a magnesium ion or phosphate, providing evidence that the nucleotide is the last of the products of ATP hydrolysis to be released.


Asunto(s)
Adenosina Trifosfato/química , Mitocondrias Cardíacas/metabolismo , Adenosina Difosfato/química , Animales , Sitios de Unión , Catálisis , Bovinos , Cristalografía por Rayos X/métodos , Hidrólisis , Iones , Magnesio/química , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Nucleótidos/química , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA